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Partial angular coherence and the angular Schmidt spectrum of entangled two-photon fields
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We study partially coherent fields that have a coherent-mode representation in the orbital-angular-momentum-
mode basis. For such fields, we introduce the concepts of the angular coherence function and the coherence angle.
Such fields are naturally produced by the process of parametric down-conversion—a second-order nonlinear
optical process in which a pump photon breaks up into two entangled photons, known as the signal and idler
photons. We show that the angular coherence functions of the signal and idler fields are directly related to the
angular Schmidt (spiral) spectrum of the down-converted two-photon field and thus that the angular Schmidt
spectrum can be measured directly by measuring the angular coherence function of either the signal or the idler
field, without requiring coincidence detection.
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I. INTRODUCTION

Classical coherence theory is a well-established subject. Its
modern interpretation is largely due to Wolf and co-workers
[1,2]. The study of coherence in the context of entangled fields
has revealed a much deeper understanding of entanglement
itself [3–6]. One of the central concepts of classical coherence
theory is the cross-spectral-density function, which quantifies
the field correlations in the space-frequency domain. A cross-
spectral-density function always has a unique coherent-mode
representation, which is a way to represent a partially coherent
field as an incoherent sum of a finite number of completely
coherent fields. In this paper, we study the partially coherent
fields that have a coherent-mode representation in the orbital-
angular-momentum basis. We show that, for such fields,
it is very useful to introduce the concepts of the angular
coherence function and the coherence angle. In fact, such fields
are naturally produced by the process of parametric down-
conversion (PDC), owing to the conservation of orbital angular
momentum (OAM) in parametric down-conversion [7,8].

The OAM entanglement of PDC photons [8] is a great
resource for quantum-information-based protocols due to the
fact that the OAM basis provides a discrete but infinite-
dimensional Hilbert space, as opposed to the polarization basis,
which provides only a two-dimensional Hilbert space [9,10].
For this reason, an accurate measurement of the dimensionality
of the OAM-entangled photons is very important. There are
two generic ways in which the dimensionality can be mea-
sured. The first is by directly measuring the two-photon inten-
sity in coincidence at different values of the OAM mode indices
[11,12] and the second is by using the Hong-Ou-Mandel inter-
ference technique [13]. In this paper, we propose an alternative
way [14] of measuring the dimensionality, by measuring the
angular coherence function of either of the down-converted
photons. This scheme is different from the existing schemes
in that it requires only singles detection, as opposed to the
coincidence detection required in the other schemes.

II. PARTIALLY COHERENT FIELDS

A. General representation

In this section, we briefly describe the general repre-
sentation of partially coherent fields. Let {V (r,t)} be an

ensemble representing the statistical properties of a partially
coherent field that is both stationary, at least in the wide
sense, and ergodic. One way to characterize the statistical
correlations of such fields is through the mutual coherence
function �(r1,r2,τ ), which quantifies the field correlation
between the space-time points (r1,t) and (r2,t + τ ), and is
defined as �(r1,r2,τ ) = 〈V ∗(r1,t)V (r2,t + τ )〉, where 〈· · ·〉e
represents the ensemble average. Another way, which is more
convenient, to characterize the field correlations is through the
cross-spectral-density function W (r1,r2,ω), which quantifies
the field correlations in the space-frequency domain and is
defined as

W (r1,r2,ω) ≡ 1

2π

∫ ∞

−∞
�(r1,r2,τ )eiωτ dτ. (1)

For conceptual clarity, we suppress from now on the frequency
argument in the definition of the cross-spectral-density func-
tion. We also assume that the cross-spectral-density function
is a continuous function of r1 and r2 within the domain D

of interest. The cross-spectral-density function is a bounded
function, in the sense that∫

D

∫
D

|W (r1,r2)|2dr1dr2 < ∞. (2)

Further, it is a Hermitian function, that is,

W ∗(r1,r2) = W (r2,r1). (3)

And most importantly, it is a non-negative definite function,
that is, ∫

D

∫
D

W (r1,r2)f ∗(r1)f (r2)dr1dr2 � 0, (4)

where f (r) is any square integrable function. The physical
interpretation of the non-negative-definiteness condition is that
the intensity distribution produced by the field, with an aperture
function f (r) in domain D, on a screen is always non-negative.
The above conditions, along with the multidimensional version
of the Mercer theorem, imply that the cross-spectral-density
function W (r1,r2) is a Hilbert-Schmidt kernel and that it has
a coherent-mode representation of the form [2]

W (r1,r2) =
∑

n

αnψ
∗
n (r1)ψn(r2). (5)
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The functions ψ∗
n (r) are the eigenfunctions and the co-

efficients αn are the eigenvalues of the integral equation∫
W (r1,r2)ψn(r1)dr1 = αnψn(r2). The Hermiticity and the

non-negative definiteness of W (r1,r2) ensure that the integral
equation has at least one nonzero eigenvalue and that all the
eigenvalues are real and non-negative, i.e., αn � 0. The above
equation can be rewritten as W (r1,r2) = ∑

n αnW
(n)(r1,r2),

where W (n)(r1,r2) ≡ ψ∗
n (r1)ψn(r2). This representation im-

plies that for any partially coherent field there exists at least
one basis in which the cross-spectral-density function can be
represented as a superposition of modes that are completely
coherent in the space-frequency domain.

B. Partially coherent field in the Laguerre-Gaussian basis

Every type of partially coherent field is characterized by
its unique coherent-mode representation. In this paper, we are
investigating partially coherent fields that have a coherent-
mode representation in the Laguerre-Gaussian (LG) basis. A
coherent mode in the LG basis is referred to as an LG mode
or an LG beam; these are the exact solutions of the paraxial
Helmholtz equation. The normalized field amplitude of these
modes at z = 0 in the cylindrical coordinate system is given
by

[
LGl

p(ρ,φ)
] ≡ [

LGl
p(ρ)

]
eilφ =

√
2p!

π (|l| + p)!

× 1

w0

(√
2ρ

w0

)|l|
Ll

p

(
2ρ2

w2
0

)
exp

(
− ρ2

w2
0

)
eilφ,

(6)

where w0 is the beam waist radius at z = 0 and l is the
azimuthal mode index. Due to the azimuthal phase dependence
of eilφ , these modes carry an orbital angular momentum of lh̄

per photon [15]. These modes have been extensively studied in
the last few decades. Such fields are very important as they hold
promise for many new fascinating applications, especially in
quantum-information science. The type of partially coherent
fields that we consider in this paper has the following coherent-
mode representation:

W (r1,r2) → W (ρ1,φ1; ρ2,φ2)

= 〈V ∗(ρ1,φ1)V (ρ2,φ2)〉e
=

∑
l,p,p′

αlpp′
[
LG∗l

p (ρ1,φ1)
][

LGl
p′ (ρ2,φ2)

]
, (7)

where V (ρ,φ) is a single realization of the field at location
(ρ,φ). We note that the field is a coherent superposition
of modes carrying different values of the orbital-angular-
momentum mode index l. The specific question that we now
ask is the following: “For a field that has the above form
for the cross-spectral-density function, what is the correlation
between the fields at two different angular positions, after the
correlations have been integrated over the radial dimensions?”
In order to answer this question, we consider the situation as
shown in Fig. 1. Consider a partially coherent field passing
through a screen in the form of a double angular slit. The two
slits are centered at angular positions φ1 and φ2, respectively.

φ
1 DA

φ2 Δφ

FIG. 1. (Color online) A scheme for studying the angular coher-
ence properties of a partially coherent beam.

The separation between the slits is 
φ = φ1 − φ2. The field
�(ρ,φ) immediately after the aperture is given by

�(ρ,φ) = V (ρ,φ)�(φ), (8)

where V (ρ,φ) is the incoming field and �(φ) is the amplitude
transmission function of the aperture. We decompose the above
field in the LG basis as

�(ρ,φ) =
∑
l,p

Alp

[
LGl

p(ρ,φ)
]
, (9)

where

Alp =
∫ ∫

ρ dρ dφ
[
LG∗l

p (ρ,φ)
]
V (ρ,φ)�(φ) (10)

is the probability amplitude for the field to be found in mode
LGl

p(ρ,φ). Since we are interested in field correlations at
different angular positions, we sum over all the p modes and
obtain the intensity Il of the field for a given value of l as

Il =
∞∑

p=0

Ilp ≡
∞∑

p=0

〈A∗
lpAlp〉e. (11)

Using Eqs. (7) and (10), we write Il as

Il =
∑

l′,p′,p′′
αl′p′p′′

∑
p

∫ ∫
ρρ ′dρ dρ ′[LGl

p(ρ)
]

× [
LG∗l

p (ρ ′)
][

LG∗l′
p′ (ρ)

][
LGl′

p′′ (ρ ′)
]

×
∫ ∫

dφ dφ′ei(l−l′)(φ−φ′)�∗(φ)�(φ′), (12)

where we have substituted for 〈V ∗(ρ1,φ1)V (ρ2,φ2)〉e from
Eq. (7). The summation over p can be evaluated by using
the identity

∑
p[LGl

p(ρ)][LG∗l
p (ρ ′)] = (1/π )δ(ρ2 − ρ ′2) (see

Appendix B for the derivation), which gives

Il =
∑

l′,p′,p′′
αl′p′p′′

1

2π

∫
ρ dρ

[
LG∗l′

p′ (ρ)
][

LGl′
p′′ (ρ)

]

×
∫ ∫

dφ dφ′ei(l−l′)(φ−φ′)�∗(φ)�(φ′). (13)

The radial integral is evaluated by noting that the
radial LG modes with a fixed value for the angular-
momentum-mode index form a complete basis, that is,∫

ρ dρ [LG∗l′
p′ (ρ)][LGl′

p′′ (ρ)] = δp′p′′/2π . Using this formula,
we obtain

Il =
∑

l′

Cl′

2π

∫ ∫
dφ dφ′ei(l−l′)(φ−φ′)�∗(φ)�(φ′), (14)
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where Cl′ = (1/2π )
∑

p′ αl′p′p′ . Next, we substitute the ex-
pression for the aperture function �(φ) = k1δ(φ − φ1) +
k2δ(φ − φ2). The intensity Il then assumes the following form:

Il = k2
1

2π

∞∑
l′=−∞

Cl′ + k2
2

2π

∞∑
l′=−∞

Cl′

+ k1k2

2π

∞∑
l′=−∞

Cl′e
−il′
φeil
φ + c.c., (15)

Equation (15) can be seen to be the angular interference law,
since it quantifies the interference between the fields coming
from two separate angular positions.

The function

W (φ1,φ2) =
∞∑

l′=−∞
Cl′e

−il′
φ (16)

represents the correlation that exists between the fields at
φ1 and φ2. We refer to W (φ1,φ2) as the angular coherence
function. We note that in Ref. [16] Paterson introduced the
“rotational coherence function,” which describes correlation
between two field points with the same radial but different
angular positions. The angular correlation function constructed
above is integrated over the radial dimensions and thus
describes only the correlation between field points with
different angular positions, without any reference to their radial
positions. The field represented by W (φ1,φ2) is completely
coherent if there is only one term in the above expansion.
However, when there is more than one term in the expansion,
the field is only partially coherent, and, as a consequence, two
field points are mutually coherent over only a finite range of
angular separation 
φ. In order to quantify this thought, we
rearrange the above equation to write it as

Il = 1

2π

∞∑
l′=−∞

Cl′
[
k2

1 + k2
2 + 2k1k2λ(
φ) cos(l
φ + θ )

]
,

(17)

where

λ(
φ) = |W (φ1,φ2)|∑∞
l′=−∞ Cl′

(18)

is the degree of angular coherence and θ the argument of
W (φ1,φ2). For a completely coherent field, the degree of
coherence λ(
φ) is equal to unity. The width of λ(
φ) is
a measure of the angular separation over which the field
remains coherent. We note that λ(
φ) involves a discrete
Fourier transform and that therefore it is a periodic function
of the argument 
φ. For this reason, one has to be careful
in defining the width of λ(
φ). However, when Cl′ has a
broad distribution in l′ such that the spread of λ(
φ) as a
function of 
φ is well within the range [0,2π ], the width of
λ(
φ) can be defined unambiguously, and this width can, to
a very good approximation, be taken as the coherence angle
of the field. As shown in Appendix A, when Cl′ has a broad
Gaussian distribution in l′ with σ being the standard deviation
of the distribution, λ(
φ) assumes, to within a very good
approximation, the following functional form:

λ(
φ) = exp

(
−σ 2
φ2

2

)
. (19)
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FIG. 2. (Color online) Intensity Il , with l = 30 and k1 = k2, as a
function of the angular separation 
φ for three different values of σ :
(a) σ = 1, (b) σ = 4, and (c) σ = 8.

We note that 1/σ is a measure of the angular width over
which the fields at the two angular positions remain mutually
coherent. Therefore, φcoh ≡ 1/σ can be defined as the coher-
ence angle of the beam. Figure 2 shows plots of the detection
probability Il as a function of the angular separation 
φ for
three different values of σ . We see that as the width σ of
the OAM-mode distribution increases, the coherence angle
decreases. The visibility of angular interference is given by

V (
φ) = 2k1k2

k2
1 + k2

2

λ(
φ), (20)

and when |k1| = |k2|, we get V (
φ) = λ(
φ).

III. ANGULAR COHERENCE
AND OAM ENTANGLEMENT

In this section, we study a process known as parametric
down-conversion that produces fields of the type considered in
the previous section. We also show how the concept of angular
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coherence can be useful for characterizing OAM entanglement
of the PDC photons [8].

A. Field produced by parametric down-conversion

Parametric down-conversion is a nonlinear optical process
in which a pump photon is broken up into two entangled
photons known as the signal photon and the idler photon.
When the pump field is of the form of a Gaussian beam, that
is, an LG beam with l = 0 and p = 0, the state |ψ2〉 of the
down-converted two-photon field is given by [17–21]

|ψ2〉 =
∑

ls ,ps ,pi

∫
dωsχlspspi

(ωs)

× |ls ,ps,ωs〉s |− ls ,pi,ω0 − ωs〉i , (21)

where χlspspi
(ωs) is the probability amplitude that the signal

and idler photons are in the LG modes characterized by
indices (l,ps) and (−l,pi), respectively. We note that, due
to the conservation of OAM in PDC, the signal and idler
photons have equal but opposite OAMs. In writing the above
state, we have assumed that the pump field is monochromatic
with frequency ω0. We have also assumed perfect frequency
phase matching such that ωs + ωi = ω0, where ωs and ωi

denote the frequencies of the signal and idler photons. The
density operator corresponding to the above two-photon state
is ρ̂2 = |ψ2〉〈ψ2|. The density operator ρ̂s corresponding to
the signal field can be calculated by taking a partial trace over
the idler modes, which gives

ρ̂s = tri ρ̂2 =
∑

ls ,ps ,p′
s

∫
dωsClspsp′

s
(ωs)|ls,ps,ωs〉s s〈ls ,p′

s ,ωs |,

(22)

where

Clspsp′
s
(ωs) =

∑
p′′

i

χlspsp
′′
i
(ωs)χ

∗
lsp′

sp
′′
i
(ωs). (23)

Next, by using Glauber’s method [22], we calculate the classi-
cal correlation function Gs(ρ1,φ1; ρ2,φ2; τ ) corresponding to
the density matrix for the signal photon:

Gs(ρ1,φ1; ρ2,φ2; τ ) = tr[ρsÊ
(−)(ρ1,φ1,t)Ê

(+)(ρ2,φ2,t + τ )],

(24)

where

Ê(−)(ρ1,φ1,t) =
∑
l1,p1

∫
dωŝ

†
l1p1

(ω)
[
LG∗l1

p1
(ρ1,φ1)

]
eiωt ,

etc., and where ŝ
†
l1p1

(ω) is the signal-photon annihilation
operator for mode [LG∗l1

p1
(ρ1,φ1)]eiωt . Carrying out the above

trace, we obtain

Gs(ρ1,φ1; ρ2,φ2; τ ) =
∑

ls ,ps ,p′
s

∫
dωsClspsp′

s
(ωs)

[
LG∗ls

p′
s
(ρ1,φ1)

]
× [

LGls
ps

(ρ2,φ2)
]
e−iωsτ . (25)

Finally, by taking the Fourier transforms of both sides of the
above equation and using the definition in Eq. (1), we obtain the
frequency-domain correlation function Ws(ρ1,φ1; ρ2,φ2; ωs)
for the signal photon:

Ws(ρ1,φ1; ρ2,φ2; ω) =
∑

ls ,ps ,p′
s

Clspsp′
s
(ω)

[
LG∗ls

p′
s
(ρ1,φ1)

]
× [

LGls
ps

(ρ2,φ2)
]
. (26)

We see at once that the correlation function for the signal
photon has the same functional form as the cross-spectral-
density function considered in Eq. (7). Therefore, it follows
that, with respect to a detection system that is sensitive only
to the azimuthal mode index, the angular coherence function
for the signal photon has the same functional form as that of
W (φ1,φ2) in Eq. (16). From now on, we suppress the frequency
argument in writing the correlation functions for the signal
photon. Starting from Eq. (26) and using the procedure of
Sec. II B, one can show that the angular coherence function
Ws(φ1,φ2) corresponding to the signal photon is

Ws(φ1,φ2) =
∞∑

ls=−∞
Cls e

−ils
φ, (27)

where Cls = (1/2π )
∑

ps
Clspsps

. We note that the signal
photon field is an incoherent superposition of modes carrying
different OAMs. Also, from our discussions in the previous
section, we find that if Cls has a broad distribution in ls , its
width can be measured directly by measuring the coherence
angle of the signal field. This fact has one very important
implication which we discuss in the next section.

B. The angular Schmidt spectrum and the coherence angle

A complete characterization of OAM entanglement of the
two-photon state shown in Eq. (21) can be performed through
Schmidt decomposition, which yields the Schmidt modes,
a natural set of biorthogonal mode pairs that constitute the
two-photon state [23]. We note that the two-photon state of
Eq. (21) is not in the Schmidt-decomposed form since therein
we have summation over three different indices. However,
in many quantum-information protocols, such as those based
on OAM entanglement, one is concerned with only the
OAM-mode index of the photons. In such cases, the detection
system is sensitive only to the OAM-mode index and therefore
the two-photon state of Eq. (21) can be written in a Schmidt
decomposed form that is only one dimensional:

|ψ2〉 =
∞∑

l=−∞

√
Cl|l〉s |− l〉i . (28)

Here s and i stand for signal and idler photons, respectively,
and |l〉 represents an eigenmode of order l, corresponding to
an azimuthal phase eilφ . Cl is the angular Schmidt coefficient,
which is the probability that the signal and idler photons
are generated in modes of order l and −l, respectively.
The distribution of this mode probability is referred to as
the angular Schmidt spectrum or the spiral spectrum of the
PDC photons [13,24]. For the two-photon state in Eq. (28),
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the corresponding angular coherence function of the signal
photon is still given by Eq. (27). The angular Schmidt
spectrum is directly related to the entanglement of the two-
photon field through an entanglement measure known as the
Schmidt number K , which for the normalized angular Schmidt
spectrum is defined as [23,25,26]:

K ≡ 1∑∞
l=−∞ C2

l

. (29)

There are two generic ways in which the angular Schmidt
spectrum of the two-photon field can be measured. First is by
directly measuring the two-photon intensity in coincidence
at different values of the OAM-mode index [11,12], and
the second is by using the Hong-Ou-Mandel interference
technique [13]. However, comparing Eqs. (28) and (27), we
find that the OAM-mode spectrum of the signal photon is
identically equal to the angular Schmidt spectrum of the
two-photon field. Therefore, it follows that by measuring the
angular coherence function, as shown in the previous section,
of the signal field, one can construct the angular Schmidt
spectrum of the two-photon field. We note that in this method
one calculates the angular Schmidt (spiral) spectrum without
doing coincidence measurements, in contrast to the above-
mentioned methods, which require coincidence detection. In
situations in which Cl has a broad, Gaussian distribution, it can
be shown that K ≈ 2

√
πσ , where σ is the standard deviation

of the distribution. This approximate equality becomes an
exact equality in the limit in which the distribution becomes
infinitely broad. Now, for the Gaussian distribution, σ is
equal to 1/φcoh, where φcoh is the coherence angle of the
beam. Thus the Schmidt number in this case is inversely
proportional to the coherence angle of the signal or the idler
field: K ≈ 2

√
π/φcoh. We thus find that as the entanglement

of the two-photon field increases the coherence angle of the
signal and idler fields decreases. We note that the above method
of estimating the entanglement of the two-photon field by
performing measurements on the one-photon signal or idler
field is applicable only when the two-photon field can be
assumed to be in the Schmidt decomposed form of Eq. (28) and
fortunately the field produced by the down-converter does have
this form. In situations in which this assumption is not valid,
the entanglement has to be estimated by doing measurements
on the entire two-photon field.

IV. CONCLUSIONS

In conclusion, we have studied partially coherent fields
that have coherent-mode representations in the OAM-mode
basis. We have introduced the concepts of the angular
correlation function and the coherence angle, and by utiliz-
ing the concept of partial angular coherence we have also
proposed a method to measure the angular Schmidt spectrum
of the entangled two-photon field produced by parametric
down-conversion. This proposed method may have important
implications as it requires only singles measurement, as
opposed to the other methods which are based on coincidence
measurements.
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APPENDIX A: ANGULAR COHERENCE OF FIELDS WITH
A BROAD DISTRIBUTION FOR Cl

In this Appendix, we consider partially coherent fields with
a broad distribution for Cl . For such fields, we can calculate
the exact functional form of the angular correlation function
W (φ1,φ2). First, we write the angular correlation function in
the following form:

W (φ1,φ2) = 1

2π

∞∑
l=−∞

Cle
−il
φ

= 1

2π

∫ ∞

−∞
C(l)comb(l)e−il
φdl, (A1)

where C(l) is a continuous function of l. The comb function is
defined as comb(l) = ∑∞

n=−∞ δ(l − n). In the above equation,
the angular correlation function W (φ1,φ2) is, up to a constant,
the Fourier transform of the product of C(l) and comb(l).
We can therefore write it as the convolution of the Fourier
transforms of C(l) and comb(l), that is,

W (φ1,φ2) = 1√
2π

F[C(l)] ⊗ F[comb(l)]

= 1√
2π

C(
φ) ⊗ 1√
2π

∫ ∞

−∞

∞∑
n=−∞

δ(l − n)e−il
φdl

= 1

2π
C(
φ) ⊗

∞∑
n=−∞

e−i
φn, (A2)

where ⊗ represents the convolution and F[· · ·] the Fourier
transformation; C(
φ) is the Fourier transform of the OAM-
mode distribution C(l). Using the formula

∑
n e−i
φn =

2π
∑

k δ(
φ − 2πk), we write W (φ1,φ2) as

W (φ1,φ2) = C(
φ) ⊗
∞∑

k=−∞
δ(
φ − 2πk)

=
∞∑

k=−∞
C(
φ − 2πk). (A3)

Now we restrict the values of 
φ to be between 0 and
2π and assume that the width of C(
φ) is much smaller
than π . This is justified as we have already assumed that
Cl has a broad distribution. We thus find that the only
significant contribution to W (φ1,φ2) comes from the k = 0
term, and thus we obtain W (φ1,φ2) = C(
φ), that is, the
angular correlation function is the Fourier transform of the
OAM-mode distribution. In the case in which C(l) is Gaussian,
that is, C(l) = 1/(

√
2πσ ) exp[−l2/(2σ 2)], where σ is the

standard deviation of the distribution, the degree of coherence
is given by λ(
φ) = exp(− σ 2
φ2

2 ).
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APPENDIX B: EVALUATION OF THE SUMMATION IN Eq. (12)

Rearranging the equation

∑
p

[
LGl

p(ρ)
][

LG∗l
p (ρ ′)

] =
∑

p

2p!

π (|l| + p)!

1

w2
0

(
2ρρ ′

w2
0

)|l|
exp

(
−ρ2 + ρ ′2

w2
o

)
L|l|

p

(
2ρ2

w2
0

)
L|l|

p

(
2ρ ′2

w2
0

)
, (B1)

we can write the above equation as

∑
p

[
LGl

p(ρ)
][

LG∗l
p (ρ ′)

] = 2

πw2
0

(
2ρρ ′

w2
0

)|l|
exp

(
−ρ2 + ρ ′2

w2
o

)∑
p

�(p + 1)

�(|l| + p + 1)
L|l|

p

(
2ρ2

w2
0

)
L|l|

p

(
2ρ ′2

w2
0

)
. (B2)

The summation on the right-hand side is a standard result for Laguerre polynomials, using which we get

∑
p

[
LGl

p(ρ)
][

LG∗l
p (ρ ′)

] = 2

πw2
0

(
2ρρ ′

w2
0

)|l|
exp

(
−ρ2 + ρ ′2

w2
o

)(
2ρ2

w2
0

2ρ ′2

w2
0

)−|l|/2

exp

(
ρ2 + ρ ′2

w2
0

)
δ

(
2ρ2

w2
0

− 2ρ ′2

w2
0

)
. (B3)

Finally after rearranging, we get the desired result∑
p

[
LGl

p(ρ)
][

LG∗l
p (ρ ′)

] = 1

π
δ(ρ2 − ρ ′2). (B4)
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